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Motivation: Multi-task Learning

Sharing information across tasks

e.g. Exam score prediction, compiler performance prediction, robot
inverse dynamics

Assuming task relatedness can be detrimental (Caruana, 1997; Baxter, 2000)

Task descriptors unavailable or difficult to define

I e.g. Compiler performance prediction: code features, responses

Learning inter-task dependencies based on task identities

Correlations between tasks directly induced

GP framework
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Multi-task Setting

Given a set X of N distinct inputs x1, . . . ,xN :

Complete set of responses:

y = (y11, . . . , yN1, . . . , y12, . . . , yN2, . . . , y1M , . . . , yNM)T

yi`: response for the `th task on the i th input xi

Y : N ×M matrix such y = vec Y

Goal: Given observations yo ⊂ y:
I make predictions of unobserved values yu
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Multi-task GP

We place a (zero mean) GP prior over the latent functions {f`}:

The Model

〈f`(x)fm(x′)〉 = K f
`mkx(x,x′) yi` ∼ N (f`(xi ), σ

2
` ),

K f : PSD matrix that specifies the inter-task similarities

kx : Covariance function over inputs

σ2
` : Noise variance for the `th task.

Additionally, kx :

stationary, correlation function

e.g. squared exponential
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Multi-task GP (2)
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Other approaches

Our approach

Observations on one task can affect predictions on the others

Bonilla et. al (2007), Yu et. al (2007): K f
`m = k f (t`, tm)

Multi-task clustering easily modelled
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xf
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Making Predictions

The mean prediction on a new data-point x∗ for task ` is given by:

f̄`(x∗) = (kf
` ⊗ kx

∗)
TΣ−1y, with

Σ = K f ⊗ K x + D ⊗ I

where:

kf
` selects the `th column of K f

kx
∗: vector of covariances between x∗ and the training points

K x : matrix of covariances between all pairs of training points

D: diagonal matrix in which the (`, `)th element is σ2
`
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Learning Hyperparameters

Given yo :

Learn θx of kx , K f , σ2
` to maximize p(yo |X ).

We note that: y|X ∼ N (0,Σ)

(a) Gradient-based method:
I K f = LLT (Recall K f must be PSD)
I Kronecker structure

(b) EM:
I learning of θx and K f in the M-step is decoupled
I closed-form updates for K f and D
I K f guaranteed PSD

K̂ f = N−1

〈
FT

(
K x(θ̂x)

)−1

F

〉
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Noiseless observations + grid = Cancellation of Transfer

x x x x x
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We can show that if there is a grid design and no observation noise then:

f (x∗, `) = (kx
∗)

T(K x)−1y·`
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We can show that if there is a grid design and no observation noise then:

f (x∗, `) = (kx
∗)

T(K x)−1y·`

The predictions for task ` depend only on the targets y·`

Similar result for the covariances

This is know as autokrigeability in geostatistics
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Related Work

Early work on MTL: Thrun (1996), Caruana (1997)

Minka (1997) and some other later GP work assumes that multiple
tasks share the same hyperparameters but are otherwise uncorrelated

Co-kriging in geostatistics

Evgeniou et al (2005) induce correlations between tasks based on a
correlated prior over linear regression parameters

Conti & O’Hagan (2007): emulating multi-output simulators

Use of task descriptors so that K f
`m = k f (t`, tm), e.g. Yu et al (2007),

Bonilla et al (2007).

Semiparametric latent factor model (SLFM) of Teh et al (2005) has
P latent processes each with its own covariance function. Noiseless
outputs are obtained by linear mixing of these latent functions.

Our model is similar, but simpler, in that all of the P latent processes
share the same covariance function; this reduces the number of free
parameters to be fitted and should help to minimize overfitting
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Experiments

Compiler performance prediction

y : Speed-up of a program (task) when applying a transformation
sequence x

11 C programs, 13 transformations, 5-length sequences

“bag-of-characters” representation for x
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Experiments

Compiler performance prediction

y : Speed-up of a program (task) when applying a transformation
sequence x

11 C programs, 13 transformations, 5-length sequences

“bag-of-characters” representation for x

Exam score prediction

y : Exam score obtained by a student x in a specific school (task).

139 schools, 15362 students

Student features (x): exam year, gender, VR band, ethnic group

dummy variables created
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Results: School Data

10 random splits of the data into training (75%) and test (25%)

kx is squared exponential kernel, K f = LLT with rank constraints

% of variance explained (larger figures are better):

no transfer task-descriptor rank 1 rank 2 rank 3 rank 5

21.05 31.57 27.02 29.20 24.88 21.00
(1.15) (1.61) (2.03) (1.60) (1.62) (2.42)

Better results with multi-task learning than without

Task-descriptor approach slightly outperforms “free-form” method
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Multi-task Learning in Robot Inverse Dynamics

Joint variables q.

Apply τi to joint i to trace a trajectory.

Inverse dynamics — predict τi (q, q̇, q̈).

q1

q2

link 1

link 2

link 0 base

end effector

Chris Williams (Institute for Adaptive and Neural Computation School of Informatics University of Edinburgh, UK)Multi-task Gaussian Process Prediction September 2008 14 / 24



Inverse Dynamics
Characteristics of τ

Torques are non-linear functions of x def
= (q, q̇, q̈).

(One) idealized rigid body control:

τi (x) = bT
i (q)q̈ + q̇THi (q)q̇︸ ︷︷ ︸

kinetic

+

potential︷ ︸︸ ︷
gi (q) + f v

i q̇i + f c
i sgn(q̇i )︸ ︷︷ ︸

viscous and Coulomb frictions

,

Physics-based modelling can be hard due to factors like unknown
parameters, friction and contact forces, joint elasticity, making
analytical predictions unfeasible

This is particularly true for compliant, lightweight humanoid robots

Chris Williams (Institute for Adaptive and Neural Computation School of Informatics University of Edinburgh, UK)Multi-task Gaussian Process Prediction September 2008 15 / 24



Inverse Dynamics
Characteristics of τ

Functions change with the loads handled at the end effector

Loads have different mass, shapes, sizes.

Bad news (1): Need a different inverse dynamics model for different
loads.

Bad news (2): Different loads may go through different trajectory in
data collection phase and may explore different portions of the
x-space.
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Good news: the changes enter through changes in the dynamic
parameters of the last link

Good news: changes are linear wrt the dynamic parameters

τm
i (x) = yT

i (x)πm

where πm ∈ R11 (e.g. Petkos and Vijayakumar,2007)

Reparameterization:

τm
i (x) = yT

i (x)πm = yT
i (x)A−1

i Aiπ
m = zT

i (x)ρm
i

where A is a non-singular 11× 11 matrix
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GP prior for Inverse Dynamics for multiple loads

Independent GP priors over the functions zij(x) ⇒ multi-task GP
prior over τm

i s 〈
τ `
i (x)τm

i (x′)
〉

= (K ρ
i )`mkx

i (x,x′)

K ρ
i ∈ RM×M is a task (or context) similarity matrix with

(K ρ
i )`m = (ρm

i )Tρ`
i

zi ,2 zi ,szi ,1

· · ·· · ·

i = 1 . . . J

τm
i

· · ·

m = 1 . . .M
ρm
i ,1

ρm
i ,2

· · ·
ρm
i ,s


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GP prior for c(x, x′)

c(x,x′) = bias + [linear with ARD](x,x′)

+ [squared exponential with ARD](x,x′)

+ [linear (with ARD)](sgn(q̇), sgn(q̇′))

Domain knowledge relates to last term (Coulomb friction)
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Data

Puma 560 robot arm manipulator: 6 degrees of freedom

Realistic simulator (Corke, 1996), including viscous and
asymmetric-Coulomb frictions.

4 paths × 4 speeds = 16 different trajectories:

Speeds: 5s, 10s, 15s and 20s completion times.

15 loads (contexts): 0.2kg . . . 3.0kg, various shapes and sizes.

Waist
Joint 1

Shoulder
Joint 2

Joint 3

Joint 5
Wrist Bend

Wrist rotation
Joint 4

Joint 6
Flange

Elbow
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$q_3$

0.3 0.4 0.5 0.6 0.7−0.2
0

0.2
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0.3

0.5
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Data

Training data

1 reference trajectory common to handling of all loads.

14 unique training trajectories, one for each context (load)

1 trajectory has no data for any context; thus this is always novel

Test data

Interpolation data sets for testing on reference trajectory and the
unique trajectory for each load.

Extrapolation data sets for testing on all trajectories.
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Methods

iGP Independent GP GPs trained independently for
each load but tying parameters
across loads

pGP pooled GP one single GP trained by pool-
ing data across loads

mGP multi-task GP with BIC sharing latent functions across
loads, selecting similarity ma-
trix using BIC

For mGP, the rank of K f is determined using BIC criterion
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Results

xaxis: total number of training datapoints, yaxis: nMSE
top: interpolation, bottom: extrapolation
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Conclusions and Discussion

GP formulation of MTL with factorization kx(x, x′) and K f , and
encoding of task similarity

This model fits exactly for multi-context inverse dynamics

Results show that MTL can be effective

This is one model for MTL, but what about others, e.g. cov functions
that don’t factorize?
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